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Abstract

In this paper we re-investigate the time conditioned search
(TCS) method in comparison to the well known word condi-
tioned search (WCS), and analyze its applicability on state-of-
the-art large vocabulary continuous speech recognition tasks.
In contrast to current standard approaches, time conditioned
search offers theoretical advantages particularly in combination
with huge vocabularies and huge language models, but it is diffi-
cult to combine with across word modelling, which was proven
to be an important technique in automatic speech recognition.
Our novel contributions for TCS are a pruning step during the
recombination calledEarly Word End Pruning, an additional re-
combination technique calledContext Recombination, the idea
of a Startup Intervalto reduce the number of started trees, and
a mechanism to combine TCS with across word modelling. We
show that, with these techniques, TCS can outperform WCS on
current ASR tasks.
Index Terms: speech recognition, search, word conditioned,
time conditioned

1. Introduction
Both WCS and TCS are time-synchronous one-pass beam-
search algorithms utilizing a prefix tree organization of the pro-
nunciation lexicon [2, 1, 4]. The difference between the two
search methods is the organization of the search space. In WCS,
the search space is structured by creating virtualword condi-
tionedcopies of the pronunciation tree, while in TCS one virtual
tree copy is created at eachtime frame. Depending on the vo-
cabulary size and on the language model (LM), much less trees
are started in TCS than in WCS, at the cost of a more expensive
recombination step when hypothesizing ending words.

Recent research focuses either on approaches equivalent
to WCS [7], or on weighted finite state transducer networks,
where the whole word-conditioned search network is expanded
and minimized statically in a preprocessing step [9]. The prob-
lem about statically compiled networks is that they can become
huge, depending on the used vocabulary and LM, and that the
knowledge sources are integrated statically, thus they cannot
be changed without re-building the whole search network. In
[7] the authors have shown that their dynamic search algorithm
comes close in efficiency to their FST approach, which shows
that dynamic decoders remain interesting.

Across word modelling [6] is a technique that allows in-
corporating the coarticulation at the word ends and word starts,
which allows a more precise acoustic modelling. It is an essen-
tial technique in order to reach a low word error rate (WER).
In dynamic search based on a prefix tree, the context is incor-
porated by inserting additional fan-out arcs at the leafs in the
search tree, and fan-in arcs at the beginning of the tree, which,

strictly speaking, transforms the tree into a directed acyclic
graph (for simplicity we will keep up the ”tree” terminology).

TCS and WCS have been compared in [5] and have been
found comparable, however the comparison was done with a
20000 word vocabulary, without across word modelling and
using a 3-gram LM, and the runtime was not analyzed. In
the following experiments, we evaluate the algorithms regard-
ing real time factor (RTF) and word error rate (WER) on the
NAB’94 H1 development corpus for the simple experiments
using within-word modelling, and on the EPPS English 2006
evaluation corpus from the TC-STAR project [1] for the exper-
iments including across word modelling. On the EPPS English
corpus we use a 60k word vocabulary, across word modelling,
and a 4-gram LM with a perplexity of 129, which is the com-
bination that has been chosen as the best one for single-pass
recognition during the 2006 TC-STAR evaluation. The corpus
consists of 192 minutes of speech, recorded from plenary ses-
sions of the european parliament. On the NAB’94 H1 dev cor-
pus we use a 60k or 20k word vocabulary, a 3-gram LM with
a perplexity of 144 and within-word modelling. We perform
all experiments on a variant of the RWTH Aachen open source
speech recognition system [8].

2. Review of Time Conditioned Search
In TCS, at every time frameτ a new virtual tree copyΩτ is
created. The search paths leading to all word end hypothe-
sesE(τ) are combined into one time conditioned treeΩτ , and
are expanded into separate word end hypotheses when a word
end stateSw is reached within the tree, by applying the relative
acoustic probabilityp(xt

τ |w) of ending wordsw to each context
hypothesise ∈ E(τ).

Like in WCS,acoustic pruningis used to reduce the num-
ber of active state hypothesesS(t), by applying a beam and
removing all state hypotheses that have a probability lower then
QAC(t) ·fAC , whereQAC(t) is the probability of the best state
hypothesis, andfAC is the acoustic pruning threshold. Addi-
tionally, histogram pruningis used to limit the total number
of active state hypotheses, using a dynamic acoustic pruning
threshold that is automatically tuned to a value so that the num-
ber of state hypotheses stays below a specified maximum.

The virtual root HMM states = 0 of each time condi-
tioned tree is activated exactly once at the timeτ when the tree
is started, so we can extract the relative acoustic probability of
a word on a specific interval:

p(xt
τ |w) =

Qτ (t, Sw)

Qτ (τ, s = 0)
(1)

WhereQτ (t, s) is the probability of the most probable path
ending in the states at timet and leading through a word start



at timeτ , and is propagated through dynamic programming as
seen in earlier publications.

Then at timet new word end hypothesesEX(t) are ex-
panded by correcting the acoustic probability relative to the con-
text probabilityq, and by applying the corresponding LM prob-
ability relative to the word historyh = um−1

1 for each context
word end hypothesis(h, q) ∈ E(τ):

EX(t) = {(τ, hw, q · p(xt
τ |w) · p(w|h))|(Sw, τ) ∈ S(t),

(h, q) ∈ E(τ)}
(2)

Where(s, τ) ∈ S(t) are the state hypotheses active at time
t with states and start-timeτ , andSw is the word end state for
wordw. We include the word start timeτ in the expanded word
end hypotheses, so the effort required during word end handling
can be measured through|EX(t)|.

LM pruning is used to reduce the number of word end hy-
potheses, by applying a pruning thresholdfLM < 1 to the ex-
panded word end hypotheses with start-timeτ , history h and
probabilityq:

EP (t) = {(τ, h, q)|(τ, h, q) ∈ EX(t), q > fLM · QLM (t)}
(3)

WhereQLM (t) = max(·,q)∈EX (t) q is the probability of
the most probable word end hypothesis of the time frame.

After pruning the hypotheses are recombined according to
the LM, and the word start timesτ are discarded:

E(t) = {(um
2 , max

(·,·um

2
,q)∈EP (t)

{q})} (4)

The new treeΩt is then started based on the probabilityq

of the best word end hypothesis:

Qt(t, s = 0) = max
(h,q)∈E(t)

{q} (5)

2.1. LM Look-Ahead

In WCS, LM look-ahead has been shown to be of high impor-
tance to improve the efficiency [2]. Each time conditioned tree
has multiple LM contextsE(τ), which makes it hard to ap-
ply context-dependent (bigram or higher) LM look-ahead effi-
ciently. Computing the LM look-ahead probability in each state
(s, τ) ∈ S(t) requires an effort that is linear in the number of
word end hypotheses|E(τ)|, since a maximization needs to be
carried out over each context historyh and probabilityq for
(h, q) ∈ E(τ). Such a high effort does not pay out, so we have
tried several heuristics to reduce it, but until now the context-
independent unigram look-ahead has shown to be the most effi-
cient option in TCS.

3. Extensions to Time Conditioned Search
3.1. Early Word End Pruning

A major problem of TCS is the number of word end hypotheses
EX(t) that appear during the expansion (see Equation 2). To
reduce that number, we apply an additional pruning step during
the expansion.

Early Word End Pruningconsists of two steps:

1. Acoustic Word End Pruning: Apply acoustic pruning to
the expandedword end hypotheses, before computing
the LM probability. In contrast to the normal acoustic

pruning, which only respects thebestcontext, this prun-
ing is applied relative toall contexts of a state hypothe-
sis.

2. Anticipated LM PruningAfter adding the LM probabil-
ity, apply an anticipated LM pruning based on the word
end hypotheses that were hypothesized until now.

The set of expanded word end hypotheses with applied
acoustic word end pruning is:

EXAC(t) := {(τ, hw, q · p(xt
τ |w) · p(w|h))|

(Sw, τ) ∈ S(t), (h, q) ∈ E(τ),

q · p(xt
τ |w) > QAC(t) · fAC} (6)

If the word end hypotheses(h, q) ∈ E(τ) are processed
in an order sorted by probabilityq, the processing for timeτ
and word end stateSw can be stopped as soon as the expanded
acoustic probability goes belowQAC(t) · fAC , eliminating a
large part of the overall effort.

The anticipated LM pruning is applied during the expansion
as well:

EXLM (t) := {(τ, h, q)|(τ, h, q) ∈ EXAC(t),

q > QLMP (t) · fLM} (7)

WhereQLMP (t) = max(·,·,q)∈EXLM (t){q} based on the
part ofEXLM (t) that has been computed until the current hy-
pothesis for this time frame.

Based on the expanded hypothesesEXLM (t), the normal
word end handling follows (pruning and recombination, see
Equation 3).

Table 1 shows a comparison of the word end hypotheses
during different processing steps at the word boundary. The
majority of potential word end hypotheses is discarded during
early pruning. Since the LM pruning is applied already dur-
ing the expansion (see Equation 7), LM pruning only reduces
the amount of hypotheses slightly in TCS, while in WCS it re-
moves the majority of hypotheses. As expected, a large part of
the word end hypotheses in TCS are then discarded during the
recombination step, when equal hypotheses from different trees
with different start times are recombined. Still, although the
same pruning values are used, a significantly higher amount of
word end hypotheses stays active in TCS. This leads to a larger
effective search space in TCS, and is the reason why TCS usu-
ally reaches a better WER at equal pruning constraints.

On the NAB’94 H1 dev corpus with a 20k words vocabu-
lary, early word end pruning in TCS typically reduces the frac-
tion of the overall runtime effort taken by the word end expan-
sion from around20% to only around5%, thus the early word
end pruning is essential for TCS to be competitive with WCS
regarding the runtime.

3.2. Context Recombination

In TCS, each tree is entered at exactly one point in time, and
has no further entries. Trees that are started at similar times are
started with similar word end hypotheses. Adjacent time con-
ditioned trees often contain equalvirtual state hypotheses (state
hypotheses expanded by their contexts) with different proba-
bilities, that would be contained in only one word conditioned
tree in WCS, and would most probably be recombined early on.
Under specific circumstances, we can perform a similar kind
of recombination in TCS, by removing word end hypotheses



Table 1: The average number of word end state hypotheses
|(Sw, ·) ∈ S(t)|, word end hypotheses without early pruning
|EX(t)|, with early pruning|EXLM (t)|, after pruning|EP (t)|,
and after recombination|E(t)|. Computed on a small subset of
the NAB’94 H1 dev corpus with a 20k word vocabulary, with
relaxed pruning constraints.

WCS TCS

Word end states(Sw, ·) ∈ S(t) 5k 5.5k

Without early pruningEX(t) 5k 1150k
With early pruningEXLM (t) 11.3k
After pruningEP (t) 1.6k 8.3k
After recombinationE(t) 0.77k 1.5k

from specific timeframes if, for a fixed word historyh, all ex-
panded state hypothesis probabilities within one tree (and thus
the reachable word end hypotheses) have a lower probability
than the equivalent expanded state hypotheses within another
tree.

Formally, the word end hypothesis(h, q) ∈ E(τ) with his-
tory h and probabilityq can be removed fromE(τ) if:

∀s : q ·
Qτ (t, s)

Qτ (τ, 0)
< max

τ ′,q′:(h,q′)∈E(τ ′)
{q′ ·

Qτ ′(t, s)

Qτ ′(τ ′, 0)
} (8)

The efficiency of this recombination is basically problem-
atic: Actions need to be performed for every state and every
context. As it can be expected that the relationships checked by
this recombination do not change much over time, the recom-
bination does not need to be performed at every time but just
at a specified interval, allowing for a speedup. This recombina-
tion will be abbreviated byCRi wherei is the interval in time
frames.

3.3. Startup Interval

In practice, it usually does not lead to a high error when few
very specific HMM transitions are forbidden. For example, we
usually do not allow a skip from the previous-to-last HMM state
of one word into the first non-virtual HMM state of the follow-
ing word, because that would lead to an additional effort during
the recombination, without a practical benefit. The HMM can
easily compensate for such forbidden transitions, by perform-
ing the skip transition either before entering the new word, or
afterwards.

Going one step further, we could also forbid the entry of a
word at specific time frames, which the HMM could also com-
pensate up to some level, by performing loops and skips accord-
ingly at the word starts and ends. Since in TCS we start one tree
at each time frame, we can save a significant part of the overall
effort by forbidding the entry of words at specific times.

We can define an interval at which we start time conditioned
trees, and at all time frames that don’t match the interval, we
define the set of word end hypotheses to be empty:

if τ modi6=0 thenE(τ) = ∅ (9)

TCS with an interval of 1 equals the normal TCS, and an
interval of 2 means that we start time conditioned trees every
second time frame. WCS on the other hand will not benefit
much from such an interval, as it starts trees based on word
histories.
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Figure 1: Illustration of a partitioned simplified coarticulated
search tree. Only 3 root states are illustrated (the circles at
the left). The rectangles represent word end states. The central
root state is the non-coarticulated root, the recombination paths
behind coarticulated roots are illustrated in red.

3.4. Time Conditioned Search with Across Word Modelling

When using across word modelling, the search network con-
tains multiple fan-in arcs, and thus has no unique root state.
The classical TCS algorithm can only be applied if there is ex-
actly one root state, relative to which the acoustic probability
p(xt

τ |w) can be computed at the word ends (see Equation 1).
Figure 1 illustrates a simplified coarticulated search tree with
multiple roots. Notably all paths behind the coarticulated root
states are recombined at latest after the first phoneme, and after
that the search graph spans multiple subtrees with a fully valid
tree structure (each subtree has exactly one root, and the fan-in
is always 1). The whole coarticulation happens within the root
treeΩ0, and the subtreesΩ1 to Ω3 each have a tree structure
that is compatible with TCS. TCS can be combined with across
word modelling by partitioning the search tree as illustrated,
and instantiating all subtrees as time conditioned treesΩr>1

τ for
time τ , and by instantiating the coarticulated root network as
word conditioned treeΩ0

h with historyh.

4. Experimental Results
4.1. Partitioned State Tree

The search tree of the EPPS English [1] recognition system
was partititioned into a total of 944 subtreesQr>0 that together
contain about 4971k states. 566k states are contained by the
coarticulated root treeΩ0 that represents the HMM of the first
phonemes of the words. WhileΩ0 is quite large, only on av-
erage about16k of those states are reachabe within one word
conditioned tree instance, as only those root states are activated
that match the last phoneme of the predecessor word.

In TCS at a moderate acoustic pruning threshold of 300, on
average 738 time conditioned subtreesΩr>0

τ are active and each
contains 42 state hypotheses. On average 76 word conditioned
root treesΩ0

h are active, and each of those contains 215 state hy-
potheses. That means that 16.3k state hypotheses are contained
by the word conditioned root trees, which makes up 34% of the
search space, and 31.4k state hypotheses are contained by the
time conditioned subtrees.

4.2. Startup Interval

Figure 2 shows the effect of different tree startup intervals in
TCS with across word modelling. The RTFs were measured
on one single Intel Core2 Duo 2.6 GHZ machine with 4 GB
of memory, on one half of the corpus. Increasing the startup
interval from 1 to 2 clearly improves the performance of TCS,
for example for the WER of 13.1% a reduction of the RTF by a
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Figure 2:WER and RTF in word- and time conditioned search
with varied acoustic pruning threshold. Measured on the EPPS
Eval06 English corpus with across word modelling.
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Figure 3:WER and RTF in word- and time conditioned search
with varied acoustic pruning threshold. Measured on the EPPS
Eval06 English corpus with across word modelling.

factor of 1.3 is achieved. We have also tested the interval 3, but
it seems to be too large, and induces a significant error.

4.3. Context Recombination

Figure 2 illustrates the effect of context recombination. For a
WER of 13.1%, context recombination reduces the RTF by 7%.
However in combination with a tree startup interval of 2, the
effect is only 1%.

4.4. Comparison with WCS

Figure 3 shows the comparison between WCS with unigram
look-ahead, WCS with bigram look-ahead, TCS, and TCS with
context recomination and tree startup interval 2. TCS reaches a
slightly better WER than WCS with unigram look-ahead, but is
mostly slightly slower for the same WER than WCS with uni-
gram look-ahead. WCS with bigram look-ahead allows reach-
ing the same best WER of 13.1% as TCS on this corpus, and
reaches that WER at a significantly better RTF than TCS, oth-
erwise it mostly performs similar to WCS with unigram look-
ahead. TCS with context recombination and a tree startup inter-
val of 2 clearly outperforms all other methods on this corpus.

5. Conclusions
We have shown that TCS can compete with WCS on state-
of-the-art LVCSR tasks, and we have introduced several tech-
niques that together even allow TCS to outperform WCS on our
test corpus, despite WCS having the advantage of the bigram
LM look-ahead. The structure of the search space in TCS is
largely independent of the size of the vocabulary and the LM,
which may specifically be an advantage when dealing with com-
plex LMs with long-span history dependences.

6. Future Work
Several questions stay open for TCS.

• The way we have integrated TCS with across word mod-
elling actually produces a kind of hybrid search, since
the coarticulated root network is always started as a word
conditioned tree. A future goal will be to make the search
spacefully time conditioned.

• The integration of context-dependent (bigram) LM look-
ahead into TCS needs further investigation, as it typically
leads to a significant advantage in WCS.

• The tree startup interval could be formulated more ele-
gantly as a TCS-specific pruning problem.
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